Is RE1/NRSE a common cis-regulatory sequence for ChAT and VAChT genes?

نویسندگان

  • S De Gois
  • L Houhou
  • Y Oda
  • M Corbex
  • F Pajak
  • E Thévenot
  • G Vodjdani
  • J Mallet
  • S Berrard
چکیده

Choline acetyltransferase (ChAT), the biosynthetic enzyme of acetylcholine, and the vesicular acetylcholine transporter (VAChT) are both required for cholinergic neurotransmission. These proteins are encoded by two embedded genes, the VAChT gene lying within the first intron of the ChAT gene. In the nervous system, both ChAT and VAChT are synthesized only in cholinergic neurons, and it is therefore likely that the cell type-specific expression of their genes is coordinately regulated. It has been suggested that a 2336-base pair genomic region upstream from the ChAT and VAChT coding sequences drives ChAT gene expression in cholinergic structures. We investigated whether this region also regulates VAChT gene transcription. Transfection assays showed that this region strongly represses the activity of the native VAChT promoters in non-neuronal cells, but has no major effect in neuronal cells whether or not they express the endogenous ChAT and VAChT genes. The silencer activity of this region is mediated solely by a repressor element 1 or neuron-restrictive silencer element (RE1/NRSE). Moreover, several proteins, including RE1-silencing transcription factor or neuron-restrictive silencer factor, are recruited by this regulatory sequence. These data suggest that this upstream region and RE1/NRSE co-regulate the expression of the ChAT and VAChT genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of myoblasts to physiologically active neuronal phenotype.

Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear wh...

متن کامل

Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators.

Increased levels of the repressor element 1/neuron restrictive silencer element (RE1/NRSE) silencing activity promoter, and a consequent reduction in the transcription of many RE1/NRSE-bearing neuronal genes, including brain-derived neurotrophic factor (BDNF), have been demonstrated in Huntington disease (HD) and represent one possible effector of its selective neuronal vulnerability. Restoring...

متن کامل

Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex.

A large number of neuron-specific genes characterized to date are under the control of negative transcriptional regulation. Many promoter regions of neuron-specific genes possess the repressor element repressor element 1/neuron-restrictive silencing element (RE1/NRSE). Its cognate binding protein, REST/NRSF, is an essential transcription factor; its null mutations result in embryonic lethality,...

متن کامل

Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes.

The completion of whole genome sequencing projects has provided the genetic instructions of life. However, whereas the identification of gene coding regions has progressed, the mapping of transcriptional regulatory motifs has moved more slowly. To understand how distinct expression profiles can be established and maintained, a greater understanding of these sequences and their trans-acting fact...

متن کامل

Fibronectin signaling stimulates BNP gene transcription by inhibiting neuron-restrictive silencer element-dependent repression.

OBJECTIVE Brain natriuretic peptide (BNP) is a cardiac hormone mainly synthesized in ventricles and its expression is markedly increased in ventricular hypertrophy that involves the accumulation of extracellular matrix proteins, such as fibronectin (Fn). We recently reported that Fn signaling stimulated BNP secretion accompanied by hypertrophic responses in vitro. METHODS To elucidate the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 47  شماره 

صفحات  -

تاریخ انتشار 2000